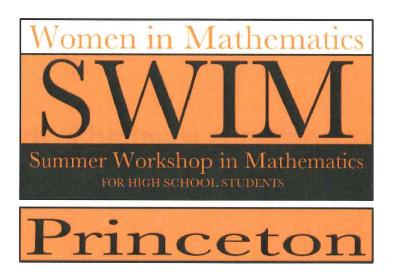
Introduction to Abstract Algebra

with Applications to Social Systems



Course II
Lecture
Notes
5 of 7

Princeton SWIM 2010

Instructor: Taniecea A. Arceneaux

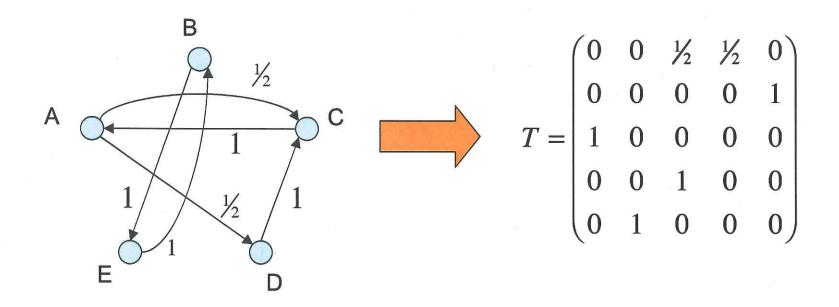
Teaching Assistants: Sarah Trebat-Leder and Amy Zhou

Corollary

Corollary. A consensus is reached in the DeGroot model if and only if the group is *strongly connected* and *aperiodic*.

Example 4

Suppose there are 5 individuals with the following influence network



Example 4

We cannot find a stationary distribution for the full network, but we can rearrange the rows and columns to reveal 2 closed, disjoint subsets:

$$T = \begin{array}{c|ccccc} A & C & D & B & E \\ \hline A & \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ B & 0 & 0 & 0 & 0 & 1 \\ E & 0 & 0 & 0 & 1 & 0 \\ \end{array}$$

Example 4

$$\pi T = \pi$$

$$T_{A,C,D} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

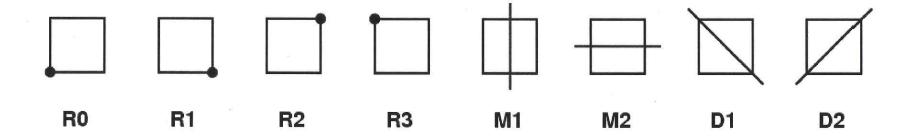
$$T_{B,E} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\pi_{A,C,D} = (\frac{2}{5}, \frac{2}{5}, \frac{1}{5})$$

$$\pi_{B,E} = \begin{pmatrix} \frac{1}{2}, & \frac{1}{2} \end{pmatrix}$$

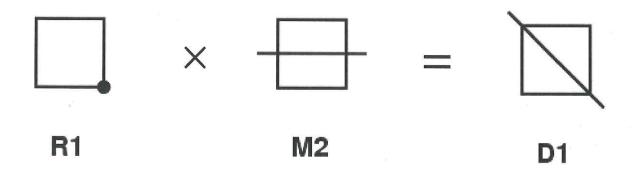
Description

Suppose we remove a square region from a plane, move it in some way, then put the square back into the space it originally occupied. Describe all possible ways in which this can be done.



Composition

Suppose we remove a square region from a plane, move it in some way, then put the square back into the space it originally occupied. Describe all possible ways in which this can be done.



Cayley Table

	R0	R1	R2	R3	M1	M2	D1	D2
R0	R0	R1	R2	R3	M1	M2	D1	D2
R1	R1	R2	R3	R0	D1	D2	M2	M1
R2	R2	R3	R0	₂ R1	M2	M1	D2	D1
R3	R3	R0	R1	R2	D2	D1	M1	M2
M1	M1	D2	M2	D1	R0	R2	R3	R1
M2	M2	D1	M1	D2	R2	R0	R1	R3
D1	D1	M1	D2	M2	R1	R3	R0	R2
D2	D2	M2	D1	M1	R3	R1	R2	R0

Definition

- Let G be a nonempty set together with a binary operation (usually called multiplication). We say G is a *group* under this operation if the following properties are satisfied:
- 1. Closure: For all a, b in G, ab is also in G.
- 2. <u>Identity</u>: There is an element in G (called the *identity*) such that ae = ea = a for all a in G.
- 3. <u>Inverses</u>: For each element a in G, there is an element b in G (called an *inverse* of a) such that ab = ba = e.
- 4. Associativity: The operation is associative; that is, (ab)c = a(bc) for all a, b, c in G.

Cayley Table

4	R0	R1	R2	R3	M1	M2	D1	D2
R0	R0	R1	R2	R3	M1	M2	D1	D2
R1	R1	R2	R3	R0	D1)	D2	M2	M1
R2	R2	R3	R0	R1	M2	M1	D2	D1
R3	R3	R0	R1	R2	D2	D1	M1	M2
M1	M1	D2	M2	D1	R0	R2	R3	R1
M2	M2	D1	M1	D2	R2	R0	R1	R3
D1	D1	M1	D2	M2	R1	R3	R0	R2
D2	D2	M2	D1	M1	R3	R1	R2	R0

NOT Commutative (Abelian)

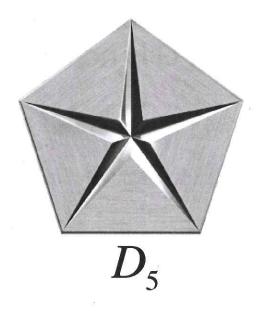
Abelian

Definition: A group G is Abelian (i.e., commutative) if for all a, b in G, ab = ba. Otherwise, G is non-Abelian.

Dihedral Groups

Symmetries can be computed for any regular n-gon $(n \ge 3)$.

The corresponding group is denoted by D_n and is called the *dihedral group of order 2n*.



Example 1

The set of integers under ordinary addition is a group.

- 1. Closure
- 2. Identity: 0
- 3. Inverses: The inverse of a is -a.
- 4. Associativity

Example 2

The set of integers under ordinary multiplication is NOT a group.

- 1. Closure
- 2. Identity: 1
- 3. Inverses: No inverses. (For example: there is no integer b such that 5b = 1.)
- 4. Associativity

Example 3

The subset $\{1, -1, i, -i\}$ of the complex numbers under complex multiplication is a group.

- 1. Closure
- 2. Identity: 1
- 3. Inverses: -1 is its own inverse. The inverse of *i* is *-i* and the inverse of *-i* is *i*.
- 4. Associativity

Example 4

The set of all 2 x 2 matrices with real entries under componentwise addition is a group.

- 1. Closure
- 2. Identity: The identity is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
- 3. Inverses: The inverse of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $\begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}$.
- 4. Associativity

Example 5

The set of all 2 x 2 matrices with real entries under matrix multiplication is NOT a group.

- 1. Closure
- 2. Identity: The identity is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

 3. Inverses: The inverse of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $\begin{pmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{pmatrix}$.

Inverses do not exist when the determinant is 0.

Uniqueness of the Identity

Theorem: In a group G, there is only one identity element.

Proof.

Suppose there are two identities of *G*, namely *e* and *e*'. Then

- 1. ae = a for all a in G, and
- 2. e'a = a for all a in G.

Let a = e' in (1) and a = e in (2).

Then e'e = e' and e'e = e.

Therefore, e = e'.

Cancellation

Theorem: In a group G, the right and left cancellation laws hold; that is, ba = ca implies b = c, and ab = ac implies b = c.

Proof. Suppose ba = ca. Let a' be an inverse of a. Multiplying on the right by a' gives (ba)a' = (ca)a'. Associativity yields b(aa') = c(aa'). Then, be = ce. Therefore, b = c.

Similarly, one can prove that ab = ac implies b = c by multiplying by a' on the left.

Uniqueness of Inverses

Theorem: For each element a in a group G, there is a unique element b in G such that ab = ba = e.

Proof. Suppose b and c are both inverses of a. Then ab = e and ac = e. Then, ab = ac. Therefore, by cancellation, b = c.

Order

Definition: The number of elements of a group (finite or infinite) is called its *order*. We will use |G| to denote the order of G.

Definition: The *order* of an element g in a group G is the smallest positive integer n such that $g^n = e$. (In additive notation, this would be ng = 0.) If no such integer exists, we say that g has *infinite order*. The order of an element g is denoted by |g|.

Subgroup

Definition: If a subset *H* of a group *G* is itself a group under the operation of *G*, we say that *H* is a subgroup of *G*.

Cayley Table

	R0	R1	R2	R3	M1	M2	D1	D2
R0	R0	R1	R2	R3	M1	M2	D1	D2
R1		R2					M2	M1
R2	R2	R3			M2	M1	D2	D1
R3	R3	R0	R1	R2	D2	D1	M1	M2
M1	I	D2			R0	R2	R3	R1
M2	1	D1			R2	R0	R1	R3
D1	D1	M1	D2	M2	1	R3	R0	R2
D2	D2	M2	D1	M1	R3	R1	R2	R0

Primitive Societies

Marriage

- Each individual has a marriage type.
- Only individuals of the same marriage type may marry.
- Marriage type is determined by parents' type and gender.
- Brother-sister marriages are not allowed.
- Some first-cousin marriages are allowed.

Research Questions

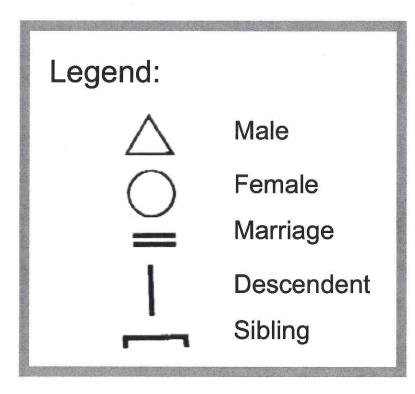
What is the structure underlying primitive marriage rules?

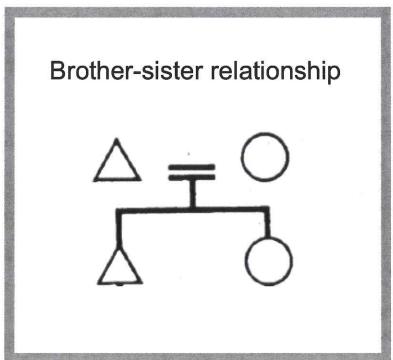
What types of marriages are allowed?

What types of marriages are not allowed?

Family Tree Diagrams

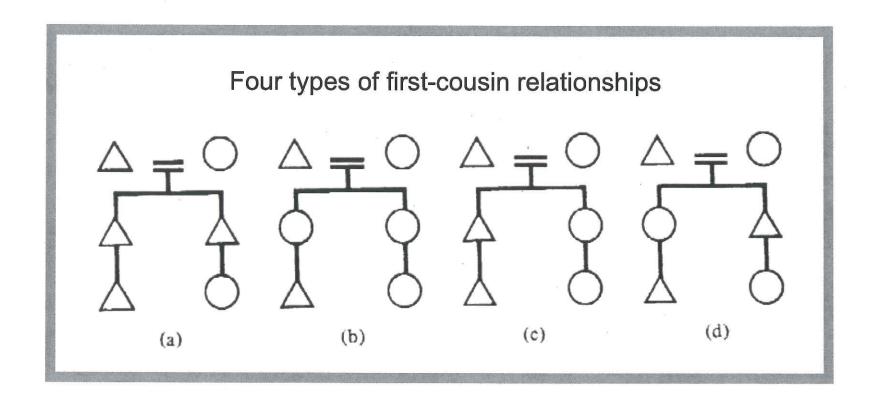
First Generation





Family Tree Diagrams

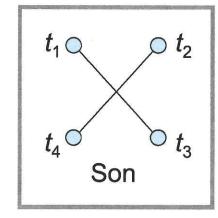
Second Generation



Example - Kariera Society, First Generation

Table 1. *Kariera* Marriage Types – First Generation

Parents	t_1	t_2	t_3	t_4
Son	t_3	t_4	t_1	t_2
Daughter	t_4	t_3	t_2	t_1



$$S = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$S = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$t_{4} \circ b_{13} \circ t_{2} \circ t_{3} \circ t_{3} \circ t_{3} \circ t_{3} \circ t_{3} \circ t_{4} \circ t_{3} \circ t_{4} \circ t_{5} \circ t_{$$

$$D = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

NOTE: S and D are permutation matrices

Example - Kariera Society, First Generation

Vector of Marriage Types $t = (t_1, t_2, t_3, t_4)$

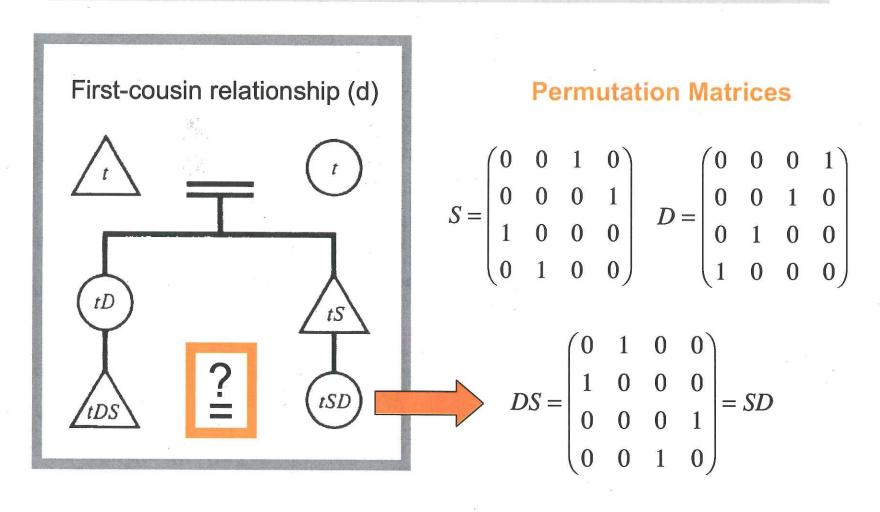
Son

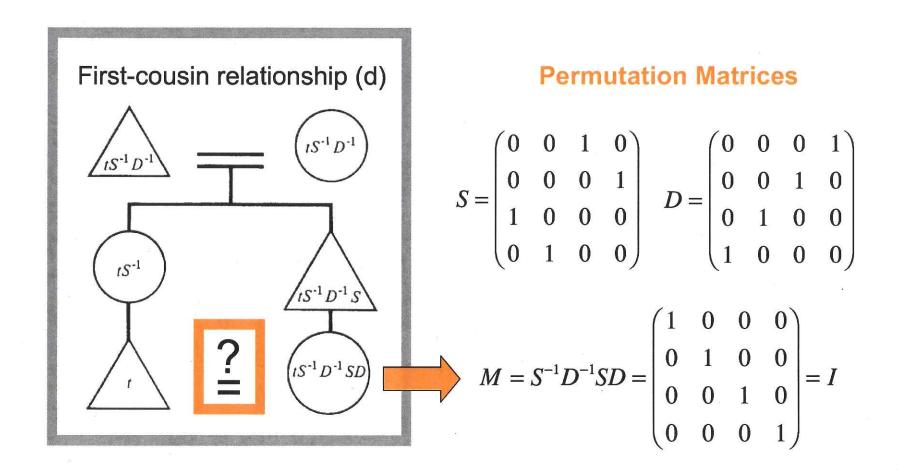
$$(t_1, t_2, t_3, t_4) \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = (t_3, t_4, t_1, t_2)$$

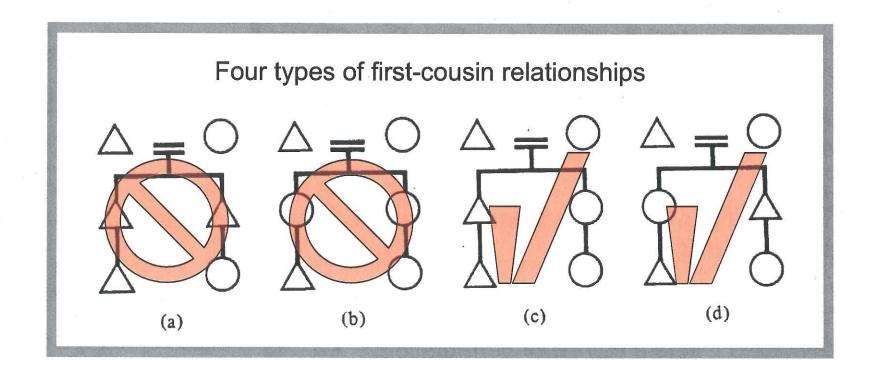
Daughter
$$\begin{pmatrix} t_1, & t_2, & t_3, & t_4 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} t_4, & t_3, & t_2, & t_1 \end{pmatrix}$$

Table 2. Kariera Marriage Types – Second Generation

Parents	t_1	t_2	t_3	t_4
Son	t_3	t_4	t_1	t_2
Son's Son	t_1	t_2	t_3	t_4
Son's Daughter	t_2	t_1	<i>t</i> ₄	t_3
Daughter	t_4	t_3	t_2	t_1
Daughter's Son	t_2	t_1	t_4	t_3
Daughter's Daughter	t_1	t_2	t_3	t_4







Example - Kariera Society, Second Generation

$$G = \{I, S, D, SD\}$$

Theorem 1: In the group generated by S and D, every element except I is a complete permutation.

Theorem 2: Marriage between relatives of a given kind is always permitted if M = I.

Theorem 3: Marriage between relatives of a given kind is never permitted if M is a complete permutation.

Theorem 4: S⁻¹D (brother-sister relation) is a complete permutation.